INTRODUCTION

Demarcation of agricultural lands makes easy to identify lands for non-agricultural uses.

➢ For this soils play very significant role since crop production is mostly depend on the soil conditions.

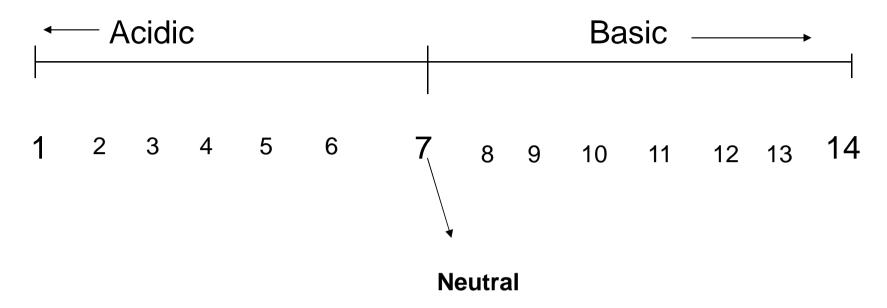
➤Therefore it is crucial to learn some important land characteristics and qualities land use planning. Study of the following parameters are important for land use planning.

Characteristics

- 1. Slope
- 2. Rockiness
- 3. PH
- 4. Salinity
- 5. Soil Type
- 6. Elevation
- 7. Mean annual Rainfall
- 8. Texture
- 9. Growing period
- 10. Soil depth
- 11. Consistency

<u>Quality</u>

Erosion Hazard, Drainage, Workability Workability Nutrient availability


Nutrient availability

Water availability Nutrient availability condition for ripening/plant growth Rooting condition, Nutrient availability Workability

pH (Soil Reaction)

- pH indicates whether the soil is acidic or basic
- P = Power H = Concentration of Hydrogen ions
- More H⁺ in soil solution \rightarrow Acidic soil
- More OH⁺ in soil solution \rightarrow Basic soil
- Equal amount of H and OH → Neutral

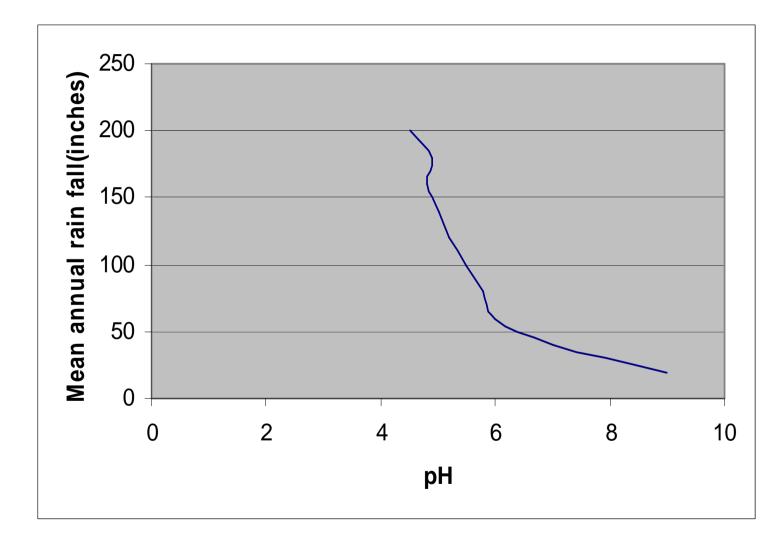
PH Scale

<u>Term</u>	рH
Highly acidic w;sYh	<4.5
Strongly acidic mqn,	4.5-5.2
Moderately acidic	5.3-5.9
Slightly acidic	6-6.5
Neutral	6.6-7.2
Moderately basic	7.3-7.8
Basic	7.9-8.3
Strongly basic	>8.4

Substances	рН	
Hydrochloric Acid (HCI)	0.0	Acid
Gastric Juices	1.0	
Lemon Juice	2.3	
Vinegar	2.9	
Wine	3.5	
Tomato Juice	4.1	
Coffee (black)	5.0	
Acid Rain	5.6	
Urine	6.0	
Rainwater	6.5	Neutral
Milk	6.6	rieutrai
Pure water	7.0	
Blood	7.4	
Baking soda solution	8.4	
Borax Solution	9.2	
Toothpaste	9.9	
Milk of Magnesia	10.5	
Limewater	11.0	
Household Ammonia	11.9	
Sodium Hydroxide (NaOH)	14.0	Alkaline

Encarta Encyclopedia, © Microsoft Corporation. All Rights Reserved.

<u>How soils become acidic?</u> 1) Roots → CO_2 → CO_2 + H_2O → H_2CO_3 2) Sulfur from factories Sulfur + Oxygen → Sulfurdioxide Sulfurdioxide + Water → Sulfuric acid


3) $N \longrightarrow NO \longrightarrow NO_2 \longrightarrow HNO_3$

4) Decomposition of Organic Matter

5) Application of some fertilizers like Ammonium Sulphate

How to measure pH?

1) Laboratory Method

Mixing of soil with water (1 soil : 5 water or

1 soil : 2.5 water), shake well for 1 hr and stand for 30 min. and measure the pH of the clear solution using pH meter.

1) Field Method

by field pH meter

Using pH papers

Using litmus papers (not gives the value)

Significance of pH value

At low pH value

➢Phosphate not readily available to the plants.

>All micronutrients except molybdenum become more available.

>Aluminum toxicity will occur.

At high pH value

>Phosphate (with calcium) \rightarrow availability decrease.

>Phosphate (with sodium) \longrightarrow availability increase.

➤Toxicity of Boron

Decrease bacterial activity

Availability of Micronutrients reduced (except Mo)

Crop		<u>рН</u>		
	<u>S1</u>	S2	S3	N
Теа	5-5.5	4.5-5	4-4.5	<4
		5.5-6	6-7	>7
Sugarcane	6-7	5.5-6	5-5.5	<5
		7-7.5	7.5-8.5	>8.5
Soybean	6-7	7-7.5 5.5-6	5-5.5 7.5-8	<5 >8
Rubber(50cm)	5-6	4.5 6-6.5	4-4.5 6.5-7	<4 >7
Rice	6-7	5-6 7-8	4.5-5 8-8.5	<4.5 >8.5

Soil Salinity

Use Electrical conductivity (EC) to measure the salinity level. Unit is ms per cm.

How to measure it ?

1) Laboratory Method

Same as pH. Use conductivity meter

2) Field Method

By Portable EC meters or

by electromagnetic induction soil conductivity sensors.

Soil salinity

≻Widely occurring problem.

Hydrology of the landscape and soils determine the movement and distribution of salts.

➤Soil salinity is due to....

- Natural factors

High evaporation and transpiration

Sea water intrusion

Salt rich winds blowing over the land

- Man-made factors (human induced salinity)

Clearing of forest

Use of poor quality irrigation water

A salinity affected land. Free salts visible on the surface

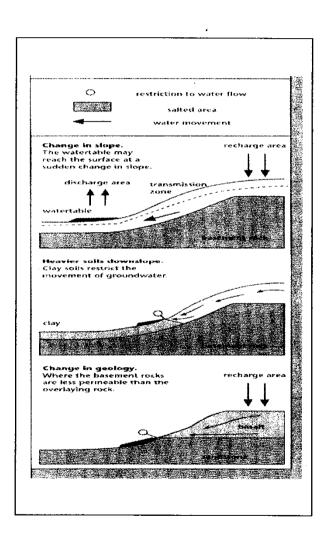
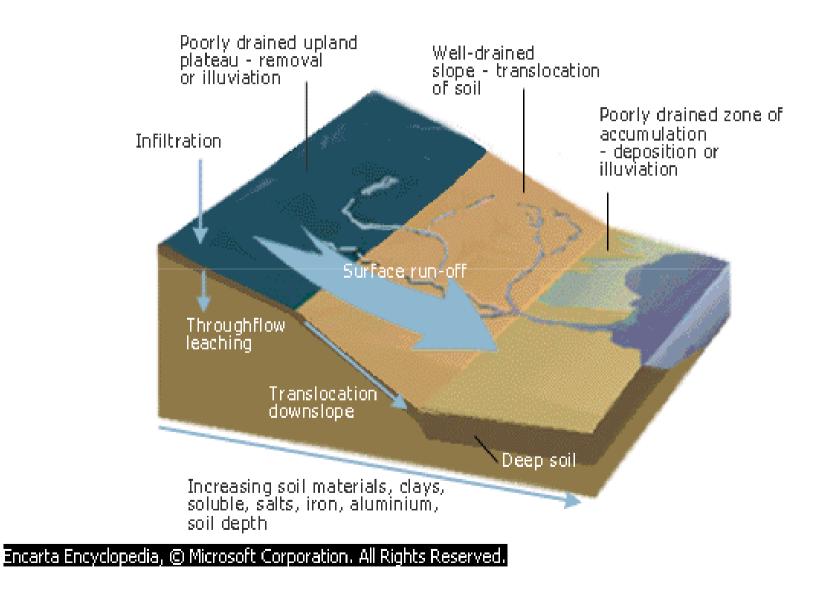



Fig. 2.3. The relationship between catchment features and groundwater flow in the development of saline discharge areas (Source: House et a., 1998).

1

USDA	Term	ECe	Total salt
<u>soil class</u>			content(%)
	Salt free	0-2	<0.15
	Slightly		
	saline	4-8	0.15-0.35
	Mod. Saline	8-15	0.35-0.65
	Strongly	>15	>0.65
	saline		

Source: Adapted FAO-Unesco(1973); and Shefield(1942) modified by Richards (1954)

High salt tolerance	<u>Medium</u>	Low
Date palm	Pomegranate	Lemon
	Grape	Avacado
Beet	Tomato	Radish
	Cabbage	Beans
Barley	Rice	
	Wheat	

Crop	<u>ECe</u>						
	<u>S1</u>	S	2		S3		N
Cassava	<2	2-	-4	2	4-6		>6
Coconut	<4	4-	-8	8	8-12		>6
Cotton	<8	8-	-13		13-17		>17
Maize	<2	2-4		2	4-8		>8
Oil palm	<2	2-4		4	4-6		>6
<u>Rice</u>	<3	3-5		ļ	5-7		>7
<u>Crop</u>	Yield potential						
	<u>100%</u>	90%	75%	50)%	no y	ield
ECw							
Paddy	2	2.6	3.4	4	.8	11.5	5

Soil Drainage

Classes:

- 1 Excessively drained
- 2 Well drained
- 3 Moderately well drained waterlogged for short period
- 4 Poorly drained waterlogged in the upper 50cm for at least half the year.
- 5 Very poorly drained waterlogged within 25cm of the surface for at least half the year and soil waterlogged within 50cm of the surface always.

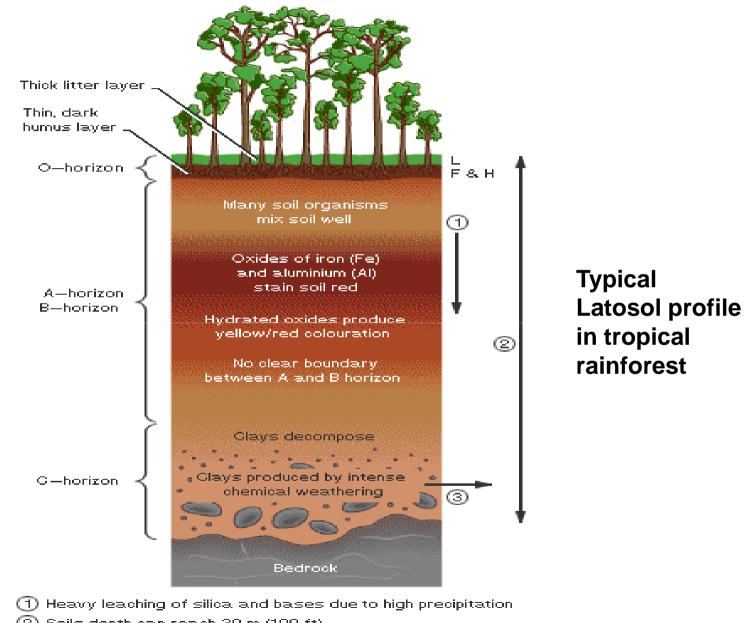
Dista	Distance to	
ash colour		mottles
Ex. Drained	no	no
W. Drained	no	>75cm
Mod.W. drained	>125	<75
	75-125	
P. Drained	20-75	
V.P. Drained	0-20	

Soil Texture:

Sand, Silt, Clay

Grittiness	smoothness	stickiness	Ball and worm formation	Texture
Not gritty	Not smooth	Ext. sticky	Long worm and can bend in to a ring	Clay
	Mod. smooth and soapy	Very sticky	do	Silty clay
		Mod. sticky	do	Silty clay Ioam
	Ext. sticky and soapy	v. Slightly sticky	Forms a ball but forms a worm with difficulty	silt

Soil Depth


Term	Depth to impeding layer	Depth to B.rock
Very deep	>120 cm	>150
Deep	90-120	120-150
Mod. Deep	60-90	90-120
Mod. shallow	30-60	60-90
Shallow	<30	<60

Soil Type

➢Soils with same kind of horizons and similar arrangements of layers in the soil profile are grouped as one soil unit.

Sri Lanka soils classified at great soil group level. Some areas (Jaffna, and some irrigation projects) mapping has been done at a series level.

Soil Map (Reconnaissance) has 34 map units29 soil map units and 5 land form units

Encarta Encyclopedia, © Microsoft Corporation. All Rights Reserved. Inflow of soil water leads to loss of nutrients